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Abstract

Casimir energy changes are investigated for geometries obtained by small but
arbitrary deformations of a given geometry for which the vacuum energy is
already known for the massless scalar field. As a specific case, deformation of
a spherical shell is studied. From the deformation of the sphere we show that
the Casimir energy is a decreasing function of the surface-to-volume ratio. The
decreasing rate is higher for less smooth deformations.

PACS numbers: 03.65.−w, 03.70.+k

1. Introduction

Casimir energies are known for several cavities in several spatial dimensions for
electromagnetic or massless scalar fields. Exact Casimir energy calculations are available
for rectangular prisms [1], for spherical shell [2], for a cylindrical region [3], for a pyramidal
cavity and for a conical cavity [4]. All these geometries have definite boundary wall shapes.
For example, the prisms are all with right angular wedges, the sphere is the perfect one; and,
the pyramid and the cone are of very special types. The obvious reason of these restrictions
is the fact that these are the regions for which one can calculate the exact field modes with the
required boundary conditions. Limited number of examples (all with rigid walls) do of course
not give much hint about the dependence of the Casimir energy on the shapes of the regions.

There are to our knowledge two approaches to dealing with rather arbitrary geometries.
The first is the proximity force approximation [5]. It is applicable to two body systems
which are close to each other. It employs the parallel plate modes in every cylindrical
region of infinitesimal base between the bodies and then integrates over these regions
[6]. In this sense the so-called pointwise summation methods too can be considered as
proximity force approximation [7]. The second approach is the one called multiple scattering
expansion [8] which relies on the connection between closed classical paths and Casimir
energy [9]. It formulates the vacuum energy for the electromagnetic field in terms of the
successive scatterings from the conducting boundaries [10]. In this approach between two
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successive scatterings free Green function is employed. The method enables one to investigate
the connections between the divergencies and the geometrical details of the boundaries.
Employment of the free Green functions however from one scattering to the next one is
not of much practical value in compact space regions: specially for more curved boundaries
one may need to consider large number of scatterings to approximate the exact Green function.
On the other hand, it may be more reasonable to employ the exact Green function (if it is already
known) of the compact region (instead of the free one) if the region under consideration is
sufficiently close to the original region. Variations around the exactly solvable geometries may
give some hint about the dependence of the vacuum energies on the shape of the boundaries.
Note that in principle the path integral approach in its basic formulation can be adopted to the
perturbation around any Green function. However its development has been only performed
for two body systems as expansion around the Green function of two plates [11].

In present work, we try to investigate the shape dependence of the Casimir energy for
massless scalar field by calculating the effect of the small but arbitrary deformations of a given
geometry for which we already know the vacuum energies. We use the Green function to
formulate the perturbation theory around the exact solution of the region with boundary S.
Suppose GS

ω is the exact Green function for the massless scalar field confined to the region
in S, and β is the small deformation of S. Converting a boundary problem into an integral
equation we arrive at the perturbation series

GS̃
ω = GS

ω + βG1S
ω + β2G2S

ω + · · · ,

where G
jS
ω is the correction to the original Green function GS

ω resulting from the j times
reflections from the deformed boundary S̃. One reflection gives information about the size
of the new boundary. To get information about the shape dependence we need to take into
account at least two reflections.

Having in hand the Green function we can construct the zeta function which is a useful tool
in Casimir energy calculation. The zeta function of the system can be expressed in terms of the
heat kernel coefficients which are functionals of the geometrical invariants of the boundaries
[12]. For massless fields which are the only fields for which the Casimir energy is meaningful,
there is no unique way of getting rid of the infinities if the heat kernel coefficient a2 of the zeta
function expansion is not zero [13]. The situation can be improved if one considers the whole
space for when one sums the zeta functions of the in and out regions a2 coefficients cancel
each other. Of course for such cancelation the boundaries should be free of sharp corners.

In the following section we briefly review the zeta function approach to the vacuum energy
calculations and the regularization scheme which we employ in our work.

In section 3 we present the general formulation of the Casimir energy contribution of
small deformations of the boundaries.

In section 4 deformation of the sphere is discussed.
In section 5 we analyze the dependence of the energy on the shape of the boundary.
Details of the involved calculations are given in the appendices.

2. A brief review of the zeta function method

Formally the calculation of the Casimir energy is reduced to a treatment of a sum over all
one-particle energy eigenvalues

E = 1

2

∑
λ∈�

√
Eλ. (1)

2
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This sum is divergent and regularization is needed. For the scalar field confined in a compact
three-dimensional region with the Dirichlet boundary condition the zeta function

ζ(z) =
∞∑

n=1

E−z
n (2)

is well defined by the Weyl theorem for Re z > 3/2 [14]. By the analytic continuation it is
possible to define this function on the whole complex plane. This may be done by using the
representation

ζ(z) = 1

�(z)

∫ ∞

0
dt t z−1K(t) (3)

with the heat kernel

K(t) =
∞∑

n=1

e−tEn . (4)

For t → ∞ the integral is well behaved. Possible poles arise from t → 0 behavior of the heat
kernel [12]

K(t) ∼
∞∑

n=0,1/2,1,...

ant
n−3/2. (5)

Splitting the integral as
∫ 1

0 dt +
∫ ∞

1 dt we arrive at

Re s(ζ(z)�(z))|z=3/2−n = an (6)

where an are heat kernel coefficients which depend on the geometry of boundary which
confines the scalar field. When the coefficient a2 is nonzero the value of the zeta function
at z = −1/2 which defines the Casimir energy becomes infinite. For massless scalar field
there is no renormalization condition to get rid of this pole in a unique way [13]. One needs
additional considerations to apply the zeta function method to the calculation of the vacuum
energy. The extrinsic curvature of the sphere will have opposite sign when viewed from inside
or outside. a2 heat-kernel coefficient depends on an odd power of extrinsic curvature. Two of
them add to cancel each other when we approach the surface both from in and out regions of
the ball. This does not hold only for the spherical shell but is a general property for boundaries
of an arbitrary shape. This cancelation of poles occurs only for infinitely thin boundaries.
Once a finite thickness is introduced the absolute value of the extrinsic curvature at the inner
and outer sides of the boundary is different and divergencies do not cancel each other.

In the present work, we try to investigate the shape dependence of the Casimir energy for
the massless scalar field by calculating the effect of the small but arbitrary smooth deformations
of the boundary of given regions for which we already know the vacuum energies. We restrict
our attention to the deformations of the spherical shell. Using the scattering theory in the
spherical coordinates one arrives at the zeta functions inside

ζin(z) = sin πz

π

∞∑
l=0

(2l + 1)

∫ ∞

0
dω ω−2z d

dω
ln(ω−l−1/2Il+1/2(ω)) (7)

and outside the ball [13, 14]

ζout(z) = sin πz

π

∞∑
l=0

(2l + 1)

∫ ∞

0
dω ω−2z d

dω
ln(ωl+1/2Kl+1/2(ω)). (8)

The zeta function in the whole space

ζ(z) = 1
2 (ζin(z) + ζout(z)) (9)

3
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or

ζ(z) = sin πz

π

∞∑
l=0

(l + 1/2)

∫ ∞

0
dω ω−2z d

dω
ln(Il+1/2(ω)Kl+1/2(ω)) (10)

is well defined at z = −1/2. To find this value we use the uniform asymptotic expansions for
Bessel functions [15]

Kν(νx) =
√

π

2ν

e−νη

(1 + x2)1/4

(
1 +

∞∑
k=1

(−)k
uk(t)

νk

)
(11)

and

Iν(νx) = 1√
2πν

eνη

(1 + x2)1/4

(
1 +

∞∑
k=1

uk(t)

νk

)
(12)

where

t = 1√
1 + x2

, η =
√

1 + x2 + ln
x

1 +
√

1 + x2
(13)

and coefficients uk(t) satisfy the recurrence relation

uk+1(t) = 1

2
t2(1 − t2)u′

k(t) +
1

8

∫ t

0
dτ(1 − 5τ 2)uk(τ ) (14)

with the initial condition u0(t) = 1. The uniform asymptotic expansions imply

ln Iν(νx) =
∞∑
−1

Xk(t)

νk
(15)

and

ln Kν(νx) =
∞∑
−1

(−)k
Xk(t)

νk
(16)

where the first four terms of Xn(t)s are

X−1 = 1

t
+ ln

t

1 + t
, X0 = 1

2
ln t, X1 = t

8
− 5t3

24
, X2 = t2

16
− 3t4

8
+

5t6

16
.

(17)

The zeta function in the whole space becomes

ζ(−1/2) = 2

π

∞∑
m=0

ζ0(2m − 2)

∫ ∞

0
dx X2m(t) (18)

where

ζ0(z) =
∞∑

n=0

1

(1/2 + n)z
(19)

is the zeta function which vanishes for z = 0 and z = −2 [17]. The vacuum energy for the
massless scalar field in the spherical shell of radius R is [16]

Esph = 1

2R
ζ(−1/2) � α

R
, α � 0, 003. (20)

4
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3. Contribution of small boundary deformations to the vacuum energy

In this section we use the Green function representation of the zeta function for the massless
scalar field in the three-dimensional space vanishing on a surface S

ζ S(z) = sin(πz)

π

∫ ∞

0
dω ω−2z+1

∫
R3

d3	xGS
ω(	x, 	x) (21)

where

GS
ω(	x, 	y) =

{
GinS

ω (	x, 	y), 	x, 	y ∈ in

GoutS
ω (	x, 	y), 	x, 	y ∈ out

(22)

is the Green function in R3 satisfying the boundary problem

(−� + ω2)GS
ω(	x, 	y) = δ(	x − 	y), GS

ω(	x, 	y) = 0, 	x ∈ S. (23)

Here GinS
ω

(
GoutS

ω

)
is the Green function in the in-region in (the out-region out). To have

a well-defined integral over R3 in (21) one considers a ball of radius L and then let it go to
infinite. Divergent terms in powers of L will correspond to the infinite vacuum oscillations of
the free Minkowski space. The variation

δζ(z) = ζ S̃(z) − ζ S(z) (24)

resulting from the deformation of the boundary S is then given by

δζ(z) = sin(πz)

π

∫ ∞

0
dω ω−2z+1

∫
R3

d3	x δGω(	x, 	x) (25)

where

δGω(	x, 	y) = GS̃
ω(	x, 	y) − GS

ω(	x, 	y). (26)

Due to (23) it satisfies the wave equation

(−� + ω2)δGω(	x, 	y) = 0 (27)

and the boundary condition

δGω(	x, 	y) = −GS
ω(	x, 	y), 	x ∈ S̃. (28)

The above boundary problem is equivalent to the integral equation [18]

GS̃
ω(	x, 	y) = GS

ω(	x, 	y) −
∫

S̃

ds̃
∂GS̃

ω(	x, 	v)

∂m(	v)
GS

ω(	v, 	y) (29)

where
∂

∂m(	v)
= 	m(	v)

∂

∂	v (30)

is the derivation along the unit vector 	m(	v) normal to the wall S̃ at a point 	v. In the parametric
representation 	v = 	v(τ), τ = (τ 1, τ 2) the integration measure on S̃ is

ds̃ =
√

|g̃| d2τ (31)

where |g̃| is the determinant of the induced metric

g̃ab =
(

∂	v
∂τa

,
∂	v
∂τb

)
(32)

with (·, ·) being the scalar product in the three-dimensional space.

5



J. Phys. A: Math. Theor. 42 (2009) 115401 H Ahmedov and I H Duru

The solution of the integral equation (29) up to the second order (which we can also
interpret as the second reflection) is

GS̃
ω(	x, 	y) = GS

ω(	x, 	y) −
∫

S̃

ds̃
∂GS

ω(	x, 	v)

∂m(	v)
GS

ω(	v, 	y)

+
∫

S̃

ds̃

∫
S̃

ds̃
∂GS

ω(	x, 	v)

∂m(	v)

∂GS
ω(	v, 	v′)

∂m( 	v′) GS
ω( 	v′, 	y). (33)

The property ∫
R3

d3	x GS
ω(	z, 	x)GS

ω(	x, 	z′) = − ∂

∂ω2
GS

ω(	z, 	z′) (34)

allows us to integrate explicitly the perturbation solution over the three-dimensional spatial
space to get

GS̃
ω = GS

ω +
1

2

∂

∂ω2

∫
S̃

ds̃
∂GS

ω(	v, 	v)

∂m(	v)
− ∂

∂ω2

∫
S̃

ds̃

∫
S̃

ds̃
∂GS

ω( 	v′, 	v)

∂m(	v)

∂GS
ω(	v, 	v′)

∂m( 	v′)
. (35)

We consider deformations of the boundary S along the unit vector 	n(z) normal to the surface
S at a point 	z:

	v = 	z − β	n(	z)f (	z) (36)

where β is the dimensionless deformation parameter of the surface S. This deformation formula
implies

g̃ab = gab − β

(
∂	z
∂τ a

,
∂f 	n
∂τb

)
+ (a → b)) (37)

where gab is the metric tensor on S. Using δ
√|g| = 1/2

√|g|gabδgab we arrive at the variation
of the integration measure

ds̃ = ds − βgab

(
∂	z
∂τ a

,
∂(f 	n)

∂τ b

)
ds. (38)

which together with the Taylor expansion

GS
ω(	x, 	v) = −βf (	z)∂GS

ω(	x, 	z)
∂n(	z) +

β2

2
f 2(	z)∂

2GS
ω(	x, 	z)

∂n2(	z) + · · · (39)

implies

δGω = −β

2

∂

∂ω2

∫
S

ds f (	z)∂
2GS

ω(	z, 	z)
∂n2(	z) +

β2

2

∂

∂ω2

∫
S

ds gab

(
∂	z
∂τ a

,
∂(f 	n)

∂τ b
)f 2(	z

)

× ∂2GS
ω(	z, 	z)

∂n2(	z) +
β2

4

∂

∂ω2

∫
S

ds f 2(	z)∂
3GS

ω(	z, 	z)
∂n3(	z)

−β2 ∂

∂ω2

∫
S

ds

∫
S

ds ′f (	z)f (	z′)
(

∂2GS
ω(	z′, 	z)

∂n(	z)∂n(	z′)

)2

.

(40)

Up to the second order in β the zeta function variation (24) becomes

δζ(z) = sin(πz)

π

∫ ∞

0
dω ω−2z+1δGω. (41)

6
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4. Deformation of the spherical shell

The in and out Green functions for the massless scalar field vanishing on the sphere of the
radius R are

Gin
ω (r, 	n; r ′ 	n′) = − 1

4π
√

rr ′

∞∑
l=0

(2l + 1)Pl((	n, 	n′))

× Il+1/2(ωr)(Kl+1/2(ωR)Il+1/2(ωr ′) − Il+1/2(ωR)Kl+1/2(ωr ′)
Il+1/2(ωR)

(42)

and

Gout
ω (r, 	n; r ′ 	n′) = − 1

4π
√

rr ′

∞∑
l=0

(2l + 1)Pl((	n, 	n′))

× (Kl+1/2(ωR)Il+1/2(ωr) − Il+1/2(ωR)Kl+1/2(ωr))Kl+1/2(ωr ′)
Kl+1/2(ωR)

(43)

where 0 � r � r ′ � R,Pl(x) is the Legendre polynomial and 	n is the unit vector normal to
the sphere (see appendix B). The derivative normal to the sphere is ∂

∂n(	z) = ∂
∂r

. We have the
derivatives of the following type:

∂2GS2

ω (r, 	n; r ′ 	n′)
∂r∂r ′

∣∣∣∣∣
r,r ′=R

= − ω

2πR

∞∑
l=0

(2l + 1)Pl((	n, 	n′))Tl+1/2(ω) (44)

where

Tl+ 1
2
(ω) = 1

2

d

dω
ln

(
Il+ 1

2
(ω)Kl+ 1

2
(ω)

)
(45)

is the spectral function in the whole space. Inserting the above type terms in (40) and (41)
becomes

δζ(z) = −2z sin(πz)

πR

∞∑
l=0

(2l + 1)

∫ ∞

0
dω ω−2zTl+ 1

2
(ω)

∫
d

(
β

4πR
f (	n) +

β2

4πR2
f 2(	n)

)

+
8z sin(πz)

πR

∞∑
l,l′=0

(
l +

1

2

) (
l′ +

1

2

)
Dll′

∫ ∞

0
dω ω1−2z

(
Tl+ 1

2
(ω) − Tl′+ 1

2
(ω)

)2
(46)

where

Dll′ = β2

16π2R2

∫
d

∫
d′ Pl((	n, 	n′))Pl′((	n, 	n′))f (	n)f ( 	n′), (47)

d = dφ dθ sin θ is the integration measure on the sphere. The first term in (46) at z = −1/2
is proportional to the vacuum energy of the massless scalar field confined in the spherical
region of the radius R. Therefore the variation of the vacuum energy is then

δE = Esph

∫
d

(
β

4πR
f (	n) +

β2

4πR2
f 2(	n)

)
+

2

πR

∞∑
l,l′=0

(
l +

1

2

)(
l′ +

1

2

)
Dll′

×
∫ ∞

0
dω ω2(Tl+ 1

2
(ω) − Tl′+ 1

2
(ω)

)2
. (48)

Expansion (B.5) and the addition formula (B.4) imply

Dll′ = β2
∞∑

J=0

J∑
M=−J

KJ
ll′

∣∣f J
M

∣∣2

(2J + 1)2
(49)

7
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where KJ
ll′ are the Klebsch–Gordon coefficients (B.6) and f J

M are the expansion coefficients
of the deformation function f in the spherical harmonics:

f (	n) =
∞∑

J=0

J∑
M=−J

f J
MY J

M(	n). (50)

Using (49) we may represent (48) as

δE = Esph

[
β

4πR

∫
df (	n) +

β2

4πR2

∫
d(f 2(	n) + f (	n)Ĥf (	n))

]
(51)

where Ĥ is an energy operator

ĤY J
M(	n) = H(J )Y J

M(	n) (52)

with e-values

H(J ) = 1

πα

∞∑
l=J

(
l +

1

2

) J∑
N=−J

�J
NGJ

N(μ)

∫ ∞

0
dω ω2(Tl+ 1

2
(ω) − Tl+N+ 1

2
(ω)

)2
. (53)

Here we used formulae (B.6) and (B.12) for the Klebsch–Gordon coefficients. The evaluation
of H(J ) which is quite involved, is given (together with all auxiliary formulae) in the
appendices. The energy operator H(J ) has the following expansion:

H(J ) = α3J
3 + α2J

2 + α1J +
α−1

J + 1
2

+
α−2(

J + 1
2

)2 + · · · . (54)

Terms with coefficients α−n, n = −1,−2,−3, . . . in the above expansion give negligible
contributions to the Casimir energy compared to the first three ones

H(J ) = −3, 03J 3 − 3, 37J 2 − 0, 52J. (55)

The Casimir energy in the cavity obtained by the small but arbitrary deformations of the
spherical region of radius R is, therefore given by

ES̃ = α

R

(
1 +

β

4πR

∫
df +

β2

4πR2

∫
df (Ĥ + 1)f

)
. (56)

5. Shape dependence of the Casimir energy, discussion

It is instructive to compare the Casimir energy (56) with the energy in a spherical cavity with
equal volume. The volume and the area of the cavity after deformation are (up to β2

R2 order)

Ṽ = 4π

3
R3

(
1 − 3β

4πR

∫
df +

3β2

4πR2

∫
df 2

)
(57)

and

S̃ = 4πR2

(
1 − β

2πR

∫
df +

β2

4πR2

∫
df

(
1 − 1

2
�

)
f

)
(58)

where

� = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
(59)

is the Laplace operator on the sphere. The ratio of the energy (56) and the Casimir energy E0

of the sphere with volume (57) is

ES̃

E0

∣∣∣∣
eq.vol.

= 1 +
β2

4πR2

(∫
df (2 + Ĥ )f − 1

2π

(∫
df

)2
)

. (60)

8
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This ratio is to be examined by its dependence on the shape of the cavity after deformation.
One way may be to study its dependence on the ratio of the surfaces of the deformed and
spherical cavities with equal volumes:

S̃

S0

∣∣∣∣
eq.vol.

= 1 − β2

4πR2

(∫
df

(
1 +

1

2
�

)
f − 1

4π

( ∫
df

)2)
. (61)

We then express the energy ratio (60) as

ES̃

E0

∣∣∣∣
eq.vol.

= 1 +
β2

4πR2

∫
df (Ĥ − �)f − 2

(
S̃

S0

∣∣∣∣
eq.vol.

− 1

)
(62)

or

ES̃

E0

∣∣∣∣
eq.vol.

= 1 − 2

∫
df

(
1 + 1

2 Ĥ
)
f − 1

4π

( ∫
df

)2

∫
df

(
1 + 1

2�
)
f − 1

4π

( ∫
df

)2

(
S̃

S0

∣∣∣∣
eq.vol.

− 1

)
. (63)

We know from (55) that the operator Ĥ has negative e-values. Thus both of the above
relations show that the Casimir energy linearly decreases by the increase of the surface. To
have a better feeling of this inverse proportionality let us consider a simple example. Suppose
the deformation function is given by

f (θ, φ) = Pl(cos θ) (64)

with Pl being the Legendre polynomials. By using (52) and (53), we can write (63) for this
specific example as

ES̃

E0

∣∣∣∣
eq.vol.

= 1 − �(l)

(
S̃

S0

∣∣∣∣
eq.vol.

− 1

)
(65)

where the coefficient � is given by

�(l) = 2
2 + H(l)

2 − l(l + 1)
(66)

or by using (55) can be written as

�(l) = 2
2 − 3, 03l3 − 3, 37l2 − 0, 52l

2 − l(l + 1)
. (67)

Thus for large values of l we can write (65) as

ES̃

E0

∣∣∣∣
eq.vol.

= 1 − 6l

(
S̃

S0

∣∣∣∣
eq.vol.

− 1

)
. (68)

We then can conclude that for less and less smooth deformations we get smaller and smaller
Casimir energies.

Before closing the section let us consider the prolate spheroid given by

x2 + y2

a2
+

z2

b2
= 1, with ē2 = a2

b2
− 1 
 1 (69)

which was previously studied up to order ē2 [19]. The deformation function for this geometry
is given by (with b = R)

f = b

2β
ē2

(
sin2 θ +

ē2

4
sin4 θ

)
. (70)

Inserting it into (56) we arrive at the Casimir energy

E = α

b

(
1 +

1

3
ē2 − 3

5
ē4

)
= 1

2b
(0, 006 + 0, 002ē2) − 0, 002

b
ē4 (71)

which is in agreement with the result of [19].
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Appendix A. The calculation of the vacuum energy

Using the uniform expansion formula (16) for the spectral function (45) we represent the
energy operator (52) (with μ = l + 1/2, ω = μx and ε = N

μ
) as

H(J ) = 1

πα

∞∑
n,m=0

∞∑
l=J

μ2−2m−2n

J∑
N=−J

�J
NDl(N, J )

∫ ∞

0
dx x2Y2n(x, ε)Y2m(x, ε) (A.1)

where

Yn(x, ε) = d

dx

(
Xn(t (ε))

(1 + ε)n
− Xn(t (0))

)
(A.2)

and

t (ε) = 1 + ε√
(1 + ε)2 + x2

. (A.3)

After the change of variables 2n = s + t, 2m = s − t we have

H(J ) =
∞∑

s=0

Hs(J ) (A.4)

where

Hs(J ) = 1

πα

∞∑
l=J

μ3−2s

J∑
N=−J

�J
NGJ

N(μ)

∫ ∞

0
dx x2Fs(x, ε) (A.5)

and

Fs(x, ε) =
s∑

t=−s

Ys+t (x, ε)Ys−t (x, ε). (A.6)

By using the Taylor expansion at ε = 0

Fs(x, ε) =
∞∑

k=0

εn

n!
F (n)

s x (A.7)

and the asymptotic expansion (B.13) we arrive at

Hs(J ) =
∞∑

τ=0

bτ ζ(2τ + 2s − 2, J ) (A.8)

where

ζ(z, J ) =
∞∑

k=0

1(
J + 1

2 + k
)z (A.9)

is the Riemann zeta function

bτ = 1

πα

τ∑
p=−τ

〈Zτ+pNτ−p〉
(τ − p)!

∫ ∞

0
dx x2F (τ−p)

s (x) (A.10)

10
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and

〈f (N)〉 =
J∑

N=−J

�J
Nf (N). (A.11)

For large J we have

ζ(2τ + 2s − 2, J ) � J 3−2τ−2s (A.12)

and

〈Zτ+pNτ−p〉 � J 2τ . (A.13)

These asymptotic expressions imply

Hs(J ) � J 3−2s , J  1. (A.14)

Thus H 0(J ) and H 1(J ) give the main contributions to the energy operator H(J ). Using the
summation formulae (B.18) we get

H 0(J ) = 1

128α

(
J (J + 1)ζ(0, J ) − J (J + 2)(J 2 − 1)

8
ζ(2, J )

)
(A.15)

and

H 1(J ) = − 9

2048α

(
J (J + 1)

2
ζ(2, J ) +

99

16 · 24

(
J +

1

2

)4

ζ(4, J )

)
(A.16)

from which by the virtue of

ζ(2, J ) ≈ 1

J + 1/2
+

1

2(J + 1/2)2
+

1

6(J + 1/2)3
+ o(J )

ζ(4, J ) ≈ 1

3(J + 1/2)3
+

1

2(J + 1/2)4
+ o(J )

(A.17)

we read

α3 = − 9

1024α
, α2 = − 10

1024α
, α1 = − 1193

1024 · 768α
. (A.18)

Appendix B. The Klebsch–Gordon coefficients

The spherical harmonics are

Y l
m(θ, φ) =

⎧⎪⎨
⎪⎩

2P m
l (cos θ) cos mφ, m = 1, 2, . . . , l

Pl(cos θ), m = 0

2P
|m|
l (cos θ) sin |m|φ, m = −1,−2, . . . ,−l

(B.1)

where Pl(x) is the Legendre function and

P m
l (x) =

√
l − m)!

(l + m)!
(1 − x2)

m
2

dm

dxm
Pl(x) (B.2)

is the associated Legendre function. We use the notation Y l
m(θ, φ) = Y l

m(	n) where

	n = (cos θ, sin θ sin φ, sin θ cos φ) (B.3)

is the unit vector on the sphere.

11
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The addition formula for the spherical harmonics is

Pl((	n, 	n′)) =
l∑

m=−l

Y l
m(n̂)Y l

m(n̂′) (B.4)

where the argument of the Legendre function is the scalar product of the unit vectors 	n and 	n′.
The Klebsch–Gordon coefficients KJ

ll+N defined by the expansion

Pl(x)Pl′(x) =
l+l′∑

J=|l−l′ |
KJ

ll′PJ (x) (B.5)

are [20]

KJ
ll+N = (

J + 1
2

)
�J

NFl(N, J ) (B.6)

where (μ = l + 1/2)

Fl(N, J ) = 1

μ + N+J
2

�
(
μ + N−J

2

)
�

(
μ + N+J

2 + 1
2

)
�

(
μ + N−J

2 + 1
2

)
�

(
μ + N+J

2

) (B.7)

and

�J
N = 1

π

�
(

J−N+1
2

)
�

(
J+N+1

2

)
�

(
J−N+2

2

)
�

(
J+N+2

2

) . (B.8)

These coefficients are nonzero if |N | � J � 2l + N and N + J is even number.
The formula

ln �(z) = z ln z − z − 1

2
ln z + ln

√
2π +

n−1∑
k=1

B2k

2k(2k − 1)z2k−1
(B.9)

implies

ln
�(z + 1

2

�(z)
= 1

2
ln z − 1

8z
+

1

192z3
(B.10)

up to the third order in 1
z
. The last formula allows us to get the asymptotic expansion of the

functions Fl(N, J ). Up to the third order in 1
μ

for large values of μ we have

Fl(N, J ) = 1√(
μ + N−J

2

)(
μ + N+J

2

)
(

1 +
J

8μ2
− NJ

8μ3

)
. (B.11)

For the function

GJ
N(μ) = (μ + N)Fl(N, J ) (B.12)

we get the following asymptotic expansion:

GJ
N(μ) = 1 +

Z1

μ
+

Z2

μ2
+

Z3

μ3
+ · · · (B.13)

where

Z1 = N

2
, Z2 = J (J + 1) − 2N2

8
, Z3 = N

2N2 − J (J + 1)

16
. (B.14)

Let J be even. Putting J = 2j and N = 2n we have

J∑
N=−J

�J
N eiNθ =

j∑
n=−j

1

π

�
(
j − n + 1

2

)
�

(
j + n + 1

2

)
(j − n)!(j + n)!

ei2nθ . (B.15)
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In the new variable m = n + j we have
J∑

N=−J

�J
N eiNθ =

2j∑
m=0

1

π

�
(
m + 1

2�
(
2j − m + 1

2

)
m!(2j − m)!

ei(2m−2j)θ (B.16)

which is exactly the series representation for zonal spherical functions Y
2j

0 (cos θ)

J∑
N=−J

�J
N eiNθ = Y J

0 (cos θ). (B.17)

The same formula is true for odd J . For example, we have
J∑

N=−J

�J
N = 1,

J∑
N=−J

�J
NN2 = J (J + 1)

2
,

J∑
N=−J

�J
NN4 = 3J 3(J + 2) + J (J − 2)

8
.

(B.18)
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